skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ross, Caroline A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Exchange bias (EB), manifested as a hysteresis‐loop offset after field‐cooling, is demonstrated in perovskite‐structured ferromagnet/antiferromagnet (La0.67Sr0.33MnO3/YFeO3)nheterostructures grown on (100) SrTiO3substrates. Bilayer samples show an EB of 306 Oe at 50 K, whereas multilayers with five layers exhibit an exchange bias of up to 424 Oe at 50 K. A spin valve consisting of La0.67Sr0.33MnO3/SrTiO3/La0.67Sr0.33MnO3/YFeO3shows stable remanent configurations resulting from pinning of the upper La0.67Sr0.33MnO3layer by the YFeO3. In contrast, EB is not observed on (111)‐oriented SrTiO3substrates due to interface roughening. These results demonstrate YFeO3as an alternative orthoferrite antiferromagnet compared to BiFeO3and LaFeO3for incorporation into exchange‐biased heterostructures. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. Free, publicly-accessible full text available June 1, 2026
  3. García-Blanco, Sonia M; Cheben, Pavel (Ed.)
    Free, publicly-accessible full text available March 19, 2026
  4. Free, publicly-accessible full text available March 1, 2026
  5. Free, publicly-accessible full text available January 29, 2026
  6. Free, publicly-accessible full text available December 31, 2025
  7. Acoustically driven ferromagnetic resonance (ADFMR) is a platform that enables efficient generation and detection of spin waves via magnetoelastic coupling with surface acoustic waves (SAWs). While previous studies successfully achieved ADFMR in ferromagnetic metals, there are only few reports on ADFMR in magnetic insulators such as yttrium iron garnet (Y3Fe5O12, YIG) despite more favorable spin wave properties, including low damping and long coherence length. The growth of high-quality YIG films for ADFMR devices is a major challenge due to poor lattice-matching and thermal degradation of the piezoelectric substrates during film crystallization. In this work, we demonstrate ADFMR of YIG thin films on LiNbO3 (LNO) substrates. We employed a SiOx buffer layer and rapid thermal annealing for crystallization of YIG films with minimal thermal degradation of LNO substrates. Optimized ADFMR device designs and time-gating measurements were used to enhance the ADFMR signal and overcome the intrinsically low magnetoelastic coupling of YIG. YIG films have a polycrystalline structure with an in-plane easy direction due to biaxial stresses induced during cooling after crystallization. The YIG device shows clear ADFMR patterns with maximum absorption for H ≈ 160 mT parallel to SAW propagation, which is consistent with our simulation results based on existing theoretical models. These results expand possibilities for developing efficient spin wave devices with magnetic insulators. 
    more » « less
  8. Abstract Iron garnets that combine robust perpendicular magnetic anisotropy (PMA) with low Gilbert damping are desirable for studies of magnetization dynamics as well as spintronic device development. This paper reports the magnetic properties of low‐damping bismuth‐substituted iron garnet thin films (Bi0.8Y2.2Fe5O12) grown on a series of single‐crystal gallium garnet substrates. The anisotropy is dominated by magnetoelastic and growth‐induced contributions. Both stripe and triangular domains form during field cycling of PMA films, with triangular domains evident in films with higher PMA. Ferromagnetic resonance measurements show damping as low as 1.3 × 10−4with linewidths of 2.7 to 5.0 mT. The lower bound for the spin‐mixing conductance of BiYIG/Pt bilayers is similar to that of other iron garnet/Pt bilayers. 
    more » « less